Pengaruh Geometri Pahat Variabel Helix Angle Pada Parameter Mesin Cnc Milling Vertikal Berbasis Mikrokontroler Terhadap Nilai Getaran Chatter
Abstract
Abstrak
Objektif. Getaran yang sering terjadi pada pengerjaan proses produksi menggunakan permesinan CNC milling merupakan hal yang sangat penting untuk diperhitungkan. Getaran ini dapat menyebabkan perubahan dimensi dan mempengaruhi tingkat kualitas benda kerja yang dihasilkan, sehingga efek getaran chatter atau self-excited vibration pada proses pengerjaan produksi menjadi masalah utama dalam proses permesinan milling. Nilai getaran chatter ditentukan menggunakan grafik SLD secara ekperimental untuk mengetahui batas antara chatter free dan chatter occurs.
Material and Metode. Material yang digunakan dalam penelitian ini adalah Stanless steel 304, dengan menggunakan sensor MPU 6050 yang terhubung pada mikrokontroler Arduino Uno menggunakan software LabVIEW 2019 student edition yang digunakan untuk mengidentifikasi nilai acceleration getaran chatter. Besar nilai acceleration diukur menggunakan FFT menggunakan software DIAdem 2019 student. Metode yang digunakan dalam penelitian ini adalah dalam bentuk eksperimental, dengan geometri pahat Variabel Helix Angle (VHA) 2 variasi sudut yaitu 40/42 (Derajat), Spindel Speed sebesar 2000,2500,3000 (RPM) , Axial Depth Of Cut sebesar 0.5, 1.0, 1.5 (mm), dan Feed Rate sebesar 100, 125 dan 150 (mm/s).
Hasil. Hasil pada Grafik Stability Lobe Diagram yang didapatkan pada proses permesinan slot milling menggunakan pahat variable helix angle 40/42 derajat dengan feed rate 150 mm/mnt memiliki chatter free yang lebih tinggi dibandingkan dengan feed rate 100 dan 125 mm/mnt. Kesimpulan. Dari hasil yang didapatkan bahwa semakin tinggi nilai feed rate maka nilai acceleration getaran chatter semakin rendah. Untuk pengembangan dalam penelitian selanjutkan maka perlu dilakukan pemilihan parameter geometri pahat dengan variasi 3 sudut mata pahat untuk mengetahui nilai getaran chatter yang signifikan.
Abstrack
Objective.Vibration that often occurs in the production process using CNC milling is very important to be taken into account. This is vibration can cause dimensional changes and affect the level of quality of the workpiece produced. Therefore, effect of chatter vibration or self-excited vibration on production process becomes a major problem in the milling machining process. Chatter vibration values can be determined using experimental SLD for determine boundary between free chatter and chatter occur.
Materials and Methods .The material used in this study is stanless steel 304, using the MPU 6050 sensor connected to Arduino Uno mikrokontroler using LabVIEW 2019 student edition software that is used to identify chatter vibration acceleration. Acceleration is measured using FFT using 2019 student DIAdem software. The method used is experimental, geometry Variable Helix Angle 2 angular 40/42 (Degrees), Spindel Speed of 2000,2500,3000 (RPM), Axial Depth Of Cut of 0.5, 1.0, 1.5 (mm), and Feed Rate of 100, 125 and 150 (mm / s).
Results. Results in the Graph Lobe Stability Diagram obtained in slot milling machining process using a variable helix angle of 40/42 degrees with feed rate of 150 mm / min have higher chatter free compared to feed rates of 100 and 125 mm / min.
Conclusion. The results show that higher the value of feed rate, chatter vibration acceleration value is lower. For further development in research, it is necessary to select tool geometry parameters with variations of 3 tool eye angle to determine chatter vibration significant
Downloads
References
Hassui, A., & Diniz, A. E. (2003). Correlating surface roughness and vibration on plunge cylindrical grinding of steel. International Journal of Machine Tools and Manufacture, 43(8), 855–862. https://doi.org/10.1016/S0890-6955(03)00049-X
Ka’Ka, S., Himran, S., Renreng, I., & Sutresman, O. (2019). Effects of Work on Shock Absorber and Spiral Springs Against Vertical Loads of Vehicles Burdening the Road Structure. IOP Conference Series: Materials Science and Engineering, 676(1). https://doi.org/10.1088/1757-899X/676/1/012042
Ka’Ka, Simon, Himran, S., Renreng, I., & Sutresman, O. (2019). Modeling of Vertical Dynamic Vibration Characteristics on Vehicles Suspension System. IOP Conference Series: Materials Science and Engineering, 619(1). https://doi.org/10.1088/1757-899X/619/1/012003
Kashyzadeh, K. R., & Ghorabi, M. J. O. (2012). Study of Chatter Analysis in Turning Tool And Control Methods – A Review. 2(4), 1–5.
Mamilla, V. R., Srinivasulu, M., & Mani, P. N. (2016). Study on computer numerical control (CNC) machines. International Journal of Advanced Scientific Research, 1(1), 21–25. Retrieved from https://www.researchgate.net/publication/303370721_Study_on_computer_numerical_control_CNC_machines
Mehrabadi, I. M., Nouri, M., & Madoliat, R. (2009). Investigating chatter vibration in deep drilling, including process damping and the gyroscopic effect. International Journal of Machine Tools and Manufacture, 49(12–13), 939–946. https://doi.org/10.1016/j.ijmachtools.2009.06.009
Quintana, G., & Ciurana, J. (2011). Chatter in machining processes: A review. International Journal of Machine Tools and Manufacture, 51(5), 363–376. https://doi.org/10.1016/j.ijmachtools.2011.01.001
Salcedo, M. C., Rodriguez, E. Y., & Ochoa, G. V. (2018). Study and analysis of the chatter in the milling the stainless steel 302 and alloy steel 4140. Contemporary Engineering Sciences, 11(55), 2715–2722. https://doi.org/10.12988/ces.2018.86290
Siddhpura, M., & Paurobally, R. (2012). A review of chatter vibration research in turning. International Journal of Machine Tools and Manufacture, 61, 27–47. https://doi.org/10.1016/j.ijmachtools.2012.05.007
Wiercigroch, M., & Krivtsov, A. M. (2001). Frictional chatter in orthogonal metal cutting. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 359(1781), 713–738. https://doi.org/10.1098/rsta.2000.0752
Yusoff, A. R., & Sims, N. D. (2011). Optimisation of variable helix tool geometry for regenerative chatter mitigation. International Journal of Machine Tools and Manufacture, 51(2), 133–141. https://doi.org/10.1016/j.ijmachtools.2010.10.004
Zatarain, M., Alvarez, J., Bediaga, I., Munoa, J., & Dombovari, Z. (2015). Implicit subspace iteration as an efficient method to compute milling stability lobe diagrams. International Journal of Advanced Manufacturing Technology, 77(1–4), 597–607. https://doi.org/10.1007/s00170-014-6470-7
Zhou, X., Zhang, D., Luo, M., & Wu, B. (2015). Chatter stability prediction in four-axis milling of aero-engine casings with bull-nose end mill. Chinese Journal of Aeronautics, 28(6), 1766–1773. https://doi.org/10.1016/j.cja.2015.06.001
Authors who publish with this journal agree to the following terms:
1. Copyright on any article is retained by the author(s).
2. The author grants the journal, right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.
3. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
4. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
5. The article and any associated published material is distributed under the Creative Commons Attribution-ShareAlike 4.0 International License