SiPuTiH: Model Convolutional Neural Network untuk Sistem Pengenalan Tulisan Tangan Hijaiyah
Abstract views: 0
,
PDF downloads: 0
Abstract
This research presents the development of SiPuTiH (Handwritten Hijaiyah Character Recognition System) using the Convolutional Neural Network (CNN) algorithm to address the challenges of handwriting variability in Arabic scripts. The methodology includes dataset acquisition and preprocessing, CNN architecture design, model training, and performance evaluation. The dataset consists of 1,680 handwritten images representing 30 Hijaiyah characters, divided into 80% training and 20% testing data. The proposed CNN architecture employs four convolutional and pooling layers with a total of 6.8 million trainable parameters. Experimental results show that SiPuTiH achieved a 99.7% accuracy rate in recognizing Hijaiyah characters, with only one misclassification between ‘ta’ (ت) and ‘tsa’ (ث) due to morphological similarity. The trained model was implemented in an interactive Streamlit-based application that includes learning modules, quizzes, and real-time handwriting prediction. SiPuTiH demonstrates high reliability not only as a handwriting recognition system but also as an engaging educational platform for learning Arabic letters. This study confirms the effectiveness of CNNs in handling the morphological complexity of Hijaiyah characters and contributes to the development of intelligent educational tools. Future work may explore larger datasets, transfer learning architectures, and contextual (word-level) recognition to enhance system scalability and performance.
Downloads
References
Budiman, S. N., Lestanti, S., & Yuana, H. (2023). Klasifikasi Alfabet Sistem Isyarat Bahasa Indonesia (SIBI) Menggunakan Computer Vision dan Deep Learning. Penerbit NEM.
Dwiaji, A. Z., Junianto, B., Haswanto, S. P., & Yusnadi, M. R. (2024). Literature Review: Penggunaan Convolutional Neural Networks Untuk Klasifikasi Citra Tumor Otak. Buletin Ilmiah Ilmu Komputer Dan Multimedia (BIIKMA), 2(2), 491–496. https://www.jurnalmahasiswa.com/index.php/biikma/article/view/1632
Gautam, R., Sinha, A., Mahmood, H. R., Singh, N., Ahmed, S., Rathore, N., Bansal, H., & Raza, M. S. (2022). Enhancing Handwritten Alphabet Prediction with Real-time IoT Sensor Integration in Machine Learning for Image. Journal of Smart Internet of Things, 2022(1), 53–64. https://doi.org/10.2478/jsiot-2022-0004
Gomes, R., Schmith, J., Figueiredo, R., Freitas, S., Machado, G., Romanini, J., & Carrard, V. (2023). Use of Artificial Intelligence in the Classification of Elementary Oral Lesions from Clinical Images. International Journal of Environmental Research and Public Health, 20(5), 3894. https://doi.org/10.3390/ijerph20053894
Handoko, A. A., Rosid, M. A., & Indahyanti, U. (2024). Implementasi Convolutional Neural Network (CNN) Untuk Pengenalan Tulisan Tangan Aksara Bima. SMATIKA JURNAL, 14(01), 96–110. https://doi.org/10.32664/smatika.v14i01.1196
Lia Farokhah. (2021). Perbandingan Metode Deteksi Wajah Menggunakan OpenCV Haar Cascade, OpenCV Single Shot Multibox Detector (SSD) dan DLib CNN. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(3), 609–614. https://doi.org/10.29207/resti.v5i3.3125
Mawaddah, S., & Suciati, N. (2020). Pengenalan Karakter Tulisan Tangan Menggunakan Ekstraksi Fitur Bentuk Berbasis Chain Code. Jurnal Teknologi Informasi Dan Ilmu Komputer, 7(4), 683–692. https://doi.org/10.25126/jtiik.2020742022
Miftahul Amri, M. (2022). Studi Banding Implementasi Metode Hidden Markov Model dalam Pengenalan Tulisan Tangan. Jurnal Genesis Indonesia, 1(01), 42–54. https://doi.org/10.56741/jgi.v1i01.26
Swasono, N. E., Himamunanto, A. R., & Budiati, H. (2024). Pengenalan Karakter Huruf Pada Gambar Tulisan Tangan Menggunakan Algoritma Convolutional Neural Network dan K-Means Clustering. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(4), 1646–1656. https://doi.org/10.57152/malcom.v4i4.1451
Willyanto, A., Alamsyah, D., & Irsyad, H. (2021). Identifikasi Tulisan Tangan Aksara Jepang Hiragana Menggunakan Metode CNN Arsitektur VGG-16. Algoritme Jurnal Mahasiswa Teknik Informatika, 2(1), 1–11. https://doi.org/https://doi.org/10.35957/algoritme.v2i1.1450
Copyright (c) 2026 Saiful Nur Budiman, Sri Lestanti, Sandi Widya Permana

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Copyright on any article is retained by the author(s).
2. The author grants the journal, right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.
3. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
4. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
5. The article and any associated published material is distributed under the Creative Commons Attribution-ShareAlike 4.0 International License
