SiPuTiH: Model Convolutional Neural Network untuk Sistem Pengenalan Tulisan Tangan Hijaiyah

  • Saiful Nur Budiman Universitas Islam Balitar
  • Sri Lestanti Universitas Islam Balitar
  • Sandi Widya Permana Universitas Islam Balitar
Abstract views: 0 , PDF downloads: 0
Keywords: CNN, Hijaiyah Characters, Handwriting Recognition, Deep Learning, Interactive Education

Abstract

This research presents the development of SiPuTiH (Handwritten Hijaiyah Character Recognition System) using the Convolutional Neural Network (CNN) algorithm to address the challenges of handwriting variability in Arabic scripts. The methodology includes dataset acquisition and preprocessing, CNN architecture design, model training, and performance evaluation. The dataset consists of 1,680 handwritten images representing 30 Hijaiyah characters, divided into 80% training and 20% testing data. The proposed CNN architecture employs four convolutional and pooling layers with a total of 6.8 million trainable parameters. Experimental results show that SiPuTiH achieved a 99.7% accuracy rate in recognizing Hijaiyah characters, with only one misclassification between ‘ta’ (ت) and ‘tsa’ (ث) due to morphological similarity. The trained model was implemented in an interactive Streamlit-based application that includes learning modules, quizzes, and real-time handwriting prediction. SiPuTiH demonstrates high reliability not only as a handwriting recognition system but also as an engaging educational platform for learning Arabic letters. This study confirms the effectiveness of CNNs in handling the morphological complexity of Hijaiyah characters and contributes to the development of intelligent educational tools. Future work may explore larger datasets, transfer learning architectures, and contextual (word-level) recognition to enhance system scalability and performance.

Downloads

Download data is not yet available.

References

Angraheni, N. R., Efendi, R., & Purwandari, E. P. (2017). Pengenalan Tulisan Tangan Huruf Hijaiyah Sambung Menggunakan Algoritma Template Matching Correlation. Rekursif: Jurnal Informatika, 5(1). https://doi.org/https://doi.org/10.33369/rekursif.v5i1.2551
Budiman, S. N., Lestanti, S., & Yuana, H. (2023). Klasifikasi Alfabet Sistem Isyarat Bahasa Indonesia (SIBI) Menggunakan Computer Vision dan Deep Learning. Penerbit NEM.
Dwiaji, A. Z., Junianto, B., Haswanto, S. P., & Yusnadi, M. R. (2024). Literature Review: Penggunaan Convolutional Neural Networks Untuk Klasifikasi Citra Tumor Otak. Buletin Ilmiah Ilmu Komputer Dan Multimedia (BIIKMA), 2(2), 491–496. https://www.jurnalmahasiswa.com/index.php/biikma/article/view/1632
Gautam, R., Sinha, A., Mahmood, H. R., Singh, N., Ahmed, S., Rathore, N., Bansal, H., & Raza, M. S. (2022). Enhancing Handwritten Alphabet Prediction with Real-time IoT Sensor Integration in Machine Learning for Image. Journal of Smart Internet of Things, 2022(1), 53–64. https://doi.org/10.2478/jsiot-2022-0004
Gomes, R., Schmith, J., Figueiredo, R., Freitas, S., Machado, G., Romanini, J., & Carrard, V. (2023). Use of Artificial Intelligence in the Classification of Elementary Oral Lesions from Clinical Images. International Journal of Environmental Research and Public Health, 20(5), 3894. https://doi.org/10.3390/ijerph20053894
Handoko, A. A., Rosid, M. A., & Indahyanti, U. (2024). Implementasi Convolutional Neural Network (CNN) Untuk Pengenalan Tulisan Tangan Aksara Bima. SMATIKA JURNAL, 14(01), 96–110. https://doi.org/10.32664/smatika.v14i01.1196
Lia Farokhah. (2021). Perbandingan Metode Deteksi Wajah Menggunakan OpenCV Haar Cascade, OpenCV Single Shot Multibox Detector (SSD) dan DLib CNN. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(3), 609–614. https://doi.org/10.29207/resti.v5i3.3125
Mawaddah, S., & Suciati, N. (2020). Pengenalan Karakter Tulisan Tangan Menggunakan Ekstraksi Fitur Bentuk Berbasis Chain Code. Jurnal Teknologi Informasi Dan Ilmu Komputer, 7(4), 683–692. https://doi.org/10.25126/jtiik.2020742022
Miftahul Amri, M. (2022). Studi Banding Implementasi Metode Hidden Markov Model dalam Pengenalan Tulisan Tangan. Jurnal Genesis Indonesia, 1(01), 42–54. https://doi.org/10.56741/jgi.v1i01.26
Swasono, N. E., Himamunanto, A. R., & Budiati, H. (2024). Pengenalan Karakter Huruf Pada Gambar Tulisan Tangan Menggunakan Algoritma Convolutional Neural Network dan K-Means Clustering. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(4), 1646–1656. https://doi.org/10.57152/malcom.v4i4.1451
Willyanto, A., Alamsyah, D., & Irsyad, H. (2021). Identifikasi Tulisan Tangan Aksara Jepang Hiragana Menggunakan Metode CNN Arsitektur VGG-16. Algoritme Jurnal Mahasiswa Teknik Informatika, 2(1), 1–11. https://doi.org/https://doi.org/10.35957/algoritme.v2i1.1450
Published
2025-12-31

PlumX Metrics

How to Cite
Saiful Nur Budiman, Sri Lestanti, & Sandi Widya Permana. (2025). SiPuTiH: Model Convolutional Neural Network untuk Sistem Pengenalan Tulisan Tangan Hijaiyah. JAMI: Jurnal Ahli Muda Indonesia, 6(2), 84 - 94. https://doi.org/10.46510/jami.v6i2.390