Pemetaan Kondisi Lingkungan Tanam menggunakan K-Means Clustering sebagai Dasar Sistem Rekomendasi Tindakan Pertanian

  • Ni'ma Kholila Akademi Komunitas Negeri Putra Sang Fajar Blitar https://orcid.org/0000-0002-9065-8783
  • Rika Wahyuni Tambunan Akademi Komunitas Negeri Putra Sang Fajar Blitar
Abstract views: 142 , PDF downloads: 86
Keywords: pemetaan, kondisi lingkungan tanam, k-means clustering, tindakan pertanian

Abstract

Objektif. Pemasangan alat IoT-Agri, sebagai sistem pemantauan kondisi lingkungan tanam berbasis Internet of Things, menghasilkan sejumlah besar data rekam kondisi lingkungan tanam. Melalui pendekatan data mining, data rekam yang terdiri dari waktu tanam, pH air, suhu air, suhu udara, dan nilai TDS dapat digunakan untuk memetakan kondisi lingkungan penanaman. Pemetaan selanjutnya dapat digunakan sebagai dasar sistem keputusan tindakan pertanian.

Material and Metode. Pemetaan kondisi lingkungan tanam menggunakan algoritma k-means clustering, diuji menggunakan elbow method dan dijadikan dasar sistem keputusan tindakan pertanian yang dikirimkan melalui telegram bot.

Hasil. Kondisi lingkungan tanam dipetakan dalam 3 (tiga) cluster. Masing-masing merupakan kondisi lingkungan tanam yang kurang nutrisi dan kurang air, cukup nutrisi tapi kurang air, serta cukup nutrisi dan cukup air. Pengujian clustering dengan elbow method menunjukkan bahwa pemetaan Kondisi lingkungan tanam bernilai optimal ditunjukkan dengan nilai inersia sebesar 199,065. Keputusan tindakan pertanian dikirimkan melalui telegram bot berupa instruksi penambahan unsur hara, penambahan air, dan penambahan unsur hara serta air.

Kesimpulan. Data yang diperoleh dari pemasangan alat IoT-Agri dikelola menggunakan pendekatan data mining, dipetakan berdasarkan kecukupan dan/atau kebutuhan lingkungan tanam terhadap nutrisi dan air. Secara efektif, keputusan tindakan pertanian dapat diberikan kepada petani sesuai dengan kondisi lingkungan tanam saat ini.

Downloads

Download data is not yet available.

References

Aggarwal, C. C. (2016). Outlier Analysis 2nd Ed. IBM T.J. Watson Research Center Yorktown Heights.
Badan Pusat Statistik. (2022). Statistik Hortikultura 2021. Badan Pusat Statistik.
Chong, B. (2021). K-means clustering algorithm: a brief review. Academic Journal of Computing & Information Science, 4(5), 37-40. 10.25236/AJCIS.2021.040506
Dewi, D. A. I. C., & Pramita, D. A. K. (2019, November). Analisis Perbandingan Metode Elbow dan Sillhouette pada Algoritma Clustering K-Medoids dalam Pengelompokan Produksi Kerajinan Bali. JURNAL MATRIX, 9(3), 102-109. http://dx.doi.org/10.31940/matrix.v9i3.1662
Febrianti, A. F., Cabral, A. H., & Anuraga, G. (2018). K-MEANS CLUSTERING DENGAN METODE ELBOW UNTUK PENGELOMPOKAN KABUPATEN DAN KOTA DI JAWA TIMUR BERDASARKAN INDIKATOR KEMISKINAN. In ii Prosiding Seminar Nasional Hasil Riset dan Pengabdian (SNHRP-I) (pp. 863-870). Universitas PGRI Adi Buana Surabaya. https://karyailmiah.unipasby.ac.id/wp-content/uploads/2019/04/K-Means.pdf
Hayatu, H. I., Mohammed, A., Isma'eel, A. B., & Ali, Y. S. (2020, June). K-Means Clustering Algorithm based Classification of Soil Fertility in North West Nigeria. UDMA Journal of Sciences (FJS), 4(2), 780-787. https://doi.org/10.33003/fjs-2020-0402-363
Iqbal, M., Barchia, F., & Romeida, A. (2019). PERTUMBUHAN DAN HASIL TANAMAN MELON (Cucumis melo L.) PADA KOMPOSISI MEDIA TANAM DAN FREKUENSI PEMUPUKAN YANG BERBEDA. Jurnal Ilmu-Ilmu Pertanian Indonesia, 21(2), 108-114. https://doi.org/10.31186/jipi.21.2.108-114
Nalendra, A. K., Fuad, M. N., Wahyudi, D., Mujiono, M., & Kholila, N. (2022). Effectiveness of the Use of the Internet of Things (IoT) in the Agricultural Sector. International Journal of Science and Society, 4(3). https://doi.org/10.54783/ijsoc.v4i3.541
Nalendra, A. K., Wahyudi, D., Mujiono, M., Fu'ad, M. N., & Kholila, N. (2022). IoT-Agri: IoT-based Environment Control and Monitoring System for Agriculture. 2022 Seventh International Conference on Informatics and Computing (ICIC). 10.1109/ICIC56845.2022.10006964
Nugraha, N. B., Alimudin, E., & Indriyono, B. V. (2022, Desember). Implementasi K-Means Clustering Pada Sistem Pakar Penentuan Jenis Sayuran. Implementasi K-Means Clustering Pada Sistem Pakar Penentuan Jenis Sayuran, 4(2), 133-141. https://doi.org/10.35970/jinita.v4i2.1627
Sinaga, K. P., & Yang, M.-S. (2020). Unsupervised K-Means Clustering Algorithm. IEEE Access, 8, 80716-80727. 10.1109/ACCESS.2020.2988796
Susanto, A., & Meiryani. (2019, July). Functions, Processes, Stages And Application Of Data Mining. INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH, 8(7), 136-140. https://ijstr.org/paper-references.php?ref=IJSTR-0719-20607
Umargono, E., Suseno, J., & V, S. K. (2020). K-Means Clustering Optimization using the Elbow Method and Early Centroid Determination Based-on Mean and Median. Proceedings of the International Conferences on Information System and Technology (CONRIST 2019), 234-240. 10.5220/0009908402340240
Widiyanto, W. W., Nugroho, F., & Kusrini. (2019). Implementation of the K-Means Cluster Algorithm in Rice Production Mapping and as a Decision Support for Agricultural Function Transition. Jurnal INFORMA Politeknik Indonusa Surakarta, 5(4). https://doi.org/10.46808/informa.v5i4.155
Published
2022-12-29

PlumX Metrics

How to Cite
Kholila, N., & Rika Wahyuni Tambunan. (2022). Pemetaan Kondisi Lingkungan Tanam menggunakan K-Means Clustering sebagai Dasar Sistem Rekomendasi Tindakan Pertanian. JAMI: Jurnal Ahli Muda Indonesia, 3(2), 238 - 246. https://doi.org/10.46510/jami.v3i2.131

Most read articles by the same author(s)