Optimasi Penempatan Tea Utensil dalam Nioh 2 Menggunakan Multiobjective NSGA-II
Abstract
Objektif. Dalam game komersial Nioh 2, terdapat sebuah mekanisme pemgembangan karakter yang bernama Tea Set. Mekanisme permainan ini menuntut pemain untuk mencari kombinasi empat Tea Utensil untuk memaksimalkan serangkaian bonus. Pada penelitian ini, percobaan dilakukan untuk mencari cara alternatif untuk memudahkan pemain mencari kombinasi yang tepat. Kriteria Tea Set yang baik tidak hanya ditandai dengan nilai-nilai bonus yang tinggi, tapi juga harus seimbang.
Material and Metode. Permasalahan ini dapat dikategorikan sebagai permasalahan multiobjective. Non-dominated Sorting Genetic Algorithm (NSGA-II) diusulkan sebagai algoritma untuk mencari kombinasi Tea Set untuk menghasilkan bonus yang kuat dan seimbang. Dalam game, sudah terdapat menu untuk mencari kombinasi tea set secara otomatis.
Tetapi tea set yang diberikan oleh menu tersebut terkadang memiliki kelemahan. Tea set yang dihasilkan oleh algoritma dibandingkan dengan hasil oleh menu tersebut.
Hasil. Ketika dibandingkan, tea set yang dihasilkan oleh algoritma cenderung lebih rendah pada nilai yang diprioritaskan. Akan tetapi nilai-nilai bonusnya lebih merata dan konsisten dibanding tea set dari menu yang terkadang mengabaikan nilai yang lain. Selain itu dalam nilai total, nailai bonus dari algoritma sering kali lebih tinggi.
Kesimpulan. Dalam kegiatan mengembangkan karakter, algortima ini dapat menjadi metode alternatif untuk mengoptimalkan kombinasi tea set. Implementasi dalam game juga dimungkinkan karena algoritma yang tergolong cepat ini tidak akan memberatkan komputasi.
Downloads
References
G. K. Sepulveda, F. Besoain, and N. A. Barriga, “Exploring dynamic difficulty adjustment in videogames,” in 2019 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), 2019, pp. 1–6.
C. Gao, H. Shen, and M. A. Babar, “Concealing jitter in multi-player online games through predictive behaviour modeling,” in 2016 IEEE 20th International Conference on Computer Supported Cooperative Work in Design (CSCWD), 2016, pp. 62–67.
KOEI TECMO Games, “Nioh 2 - Completed Edition,” Team Ninja, 2020, Windows, Playstation. [Online]. Available: https://teamninja- studio.com/nioh2
TeamNINJA Studio, “The nioh franchise has now surpassed 7 million units shipped worldwide!” 2022. [Online]. Available: https://teamninja-studio.com
Metacritic, “Nioh 2 completed edition for pc reviews,” Fandom Company, 2021, diakses: 1-3-2023. [Online]. Available: https://metacritic.com/game/pc/nioh-2-the-complete-edition
K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: Nsga-ii,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.
I. Millington, AI for Games, Third Edition, 3rd ed. CRC Press, 2019.
I. Athaillah, S. M. S. Nugroho, and M. Hariadi, “Nsga-ii for city building placement optimization in the turn-based game civilization vi,” in 2019 12th International Conference on Information and Communication Technology and System (ICTS), 2019, pp. 60–64.
Y. Yang, J.-f. Wu, X.-b. Zhu, and J.-c. Wu, “A hybrid evolutionary algorithm for finding pareto optimal set in multi-objective optimization,” in 2011 Seventh International Conference on Natural Computation, vol. 3, 2011, pp. 1233–1236.
P. Dhal and C. Azad, “A multi-objective evolutionary feature selection approach for the classification of multi-label data,” in 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), 2022, pp. 1986–1989.
Copyright (c) 2023 Ibnu Athaillah , M. Mujiono
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
1. Copyright on any article is retained by the author(s).
2. The author grants the journal, right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work’s authorship and initial publication in this journal.
3. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
4. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
5. The article and any associated published material is distributed under the Creative Commons Attribution-ShareAlike 4.0 International License